Sum1, a component of the fission yeast eIF3 translation initiation complex, is rapidly relocalized during environmental stress and interacts with components of the 26S proteasome.

نویسندگان

  • Isabelle Dunand-Sauthier
  • Carol Walker
  • Caroline Wilkinson
  • Colin Gordon
  • Richard Crane
  • Chris Norbury
  • Tim Humphrey
چکیده

Eukaryotic translation initiation factor 3 (eIF3) is a multisubunit complex that plays a central role in translation initiation. We show that fission yeast Sum1, which is structurally related to known eIF3 subunits in other species, is essential for translation initiation, whereas its overexpression results in reduced global translation. Sum1 is associated with the 40S ribosome and interacts stably with Int6, an eIF3 component, in vivo, suggesting that Sum1 is a component of the eIF3 complex. Sum1 is cytoplasmic under normal growth conditions. Surprisingly, Sum1 is rapidly relocalized to cytoplasmic foci after osmotic and thermal stress. Int6 and p116, another putative eIF3 subunit, behave similarly, suggesting that eIF3 is a dynamic complex. These cytoplasmic foci, which additionally comprise eIF4E and RNA components, may function as translation centers during environmental stress. After heat shock, Sum1 additionally colocalizes stably with the 26S proteasome at the nuclear periphery. The relationship between Sum1 and the 26S proteasome was further investigated, and we find cytoplasmic Sum1 localization to be dependent on the 26S proteasome. Furthermore, Sum1 interacts with the Mts2 and Mts4 components of the 26S proteasome. These data indicate a functional link between components of the structurally related eIF3 translation initiation and 26S proteasome complexes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sum1, a highly conserved WD-repeat protein, suppresses S-M checkpoint mutants and inhibits the osmotic stress cell cycle response in fission yeast.

The S-M checkpoint ensures that entry into mitosis is dependent on completion of DNA replication. In the fission yeast Schizosaccharomyces pombe, the SM checkpoint mutant cdc2-3w is thought to be defective in receiving the checkpoint signal. To isolate genes that function in the checkpoint pathway, we screened an S. pombe cDNA library for genes that, when overexpressed, could suppress the check...

متن کامل

Vgl1, a multi-KH domain protein, is a novel component of the fission yeast stress granules required for cell survival under thermal stress

Multiple KH-domain proteins, collectively known as vigilins, are evolutionarily highly conserved proteins that are present in eukaryotic organisms from yeast to metazoa. Proposed roles for vigilins include chromosome segregation, messenger RNA (mRNA) metabolism, translation and tRNA transport. As a step toward understanding its biological function, we have identified the fission yeast vigilin, ...

متن کامل

Arabidopsis eIF3e interacts with subunits of the ribosome, Cop9 signalosome and proteasome.

The roles of individual Eukaryotic translation Initiation Factor 3 (eIF3) subunits are largely unclear. Though some are essential, while others are thought to have regulatory roles. The "e" subunit, also known as Int-6, is a candidate for a regulatory subunit as it is not essential for translation initiation in yeasts. To further elucidate the roles of eIF3e, we have employed an interaction-tra...

متن کامل

The eIF3 interactome reveals the translasome, a supercomplex linking protein synthesis and degradation machineries.

eIF3 promotes translation initiation, but relatively little is known about its full range of activities in the cell. Here, we employed affinity purification and highly sensitive LC-MS/MS to decipher the fission yeast eIF3 interactome, which was found to contain 230 proteins. eIF3 assembles into a large supercomplex, the translasome, which contains elongation factors, tRNA synthetases, 40S and 6...

متن کامل

The eIF3c/NIP1 PCI domain interacts with RNA and RACK1/ASC1 and promotes assembly of translation preinitiation complexes

Several subunits of the multifunctional eukaryotic translation initiation factor 3 (eIF3) contain well-defined domains. Among them is the conserved bipartite PCI domain, typically serving as the principal scaffold for multisubunit 26S proteasome lid, CSN and eIF3 complexes, which constitutes most of the C-terminal region of the c/NIP1 subunit. Interestingly, the c/NIP1-PCI domain is exceptional...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biology of the cell

دوره 13 5  شماره 

صفحات  -

تاریخ انتشار 2002